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WHO THIS "BOOK" IS FOR

This book is for children and adults alike. It is for math nerds, experts, and people who avoid the
subject. It is for coloring enthusiasts as well as those who would prefer to simply read through or
play with patterns. It is for educators and students, parents and children, and casual readers just
looking to have a good time.

This book is for you.

WHAT THIS "BOOK" IS AND IS ABOUT

This is a "coloring book about math" that is both digital and on paper.

It is a playful book. The mathematical concepts it presents show themselves in illustrations that
are interactive and animated online, and can be colored on paper. Throughout the book there are
visual puzzles and coloring challenges.

The book is about symmetry. Group theory is used as the mathematical foundation to discuss
its content and interactive visuals are used to help communicate the concepts.

Group theory and other mathematical studies of symmetry are traditionally covered in college
level or higher courses. This is unfortunate because these exciting parts of mathematics can be
introduced with language that is visual, and with words that avoid jargon. Such an introduction is
the intention of this "book".

HOW TO USE THIS "BOOK"

This book is both on paper and online.

The two formats complement each other, and can be used together. Their content is the same,
but they provide different ways to more deeply engage or play with it.

Color the illustrations on paper. Only on paper can the coloring challenges be fully completed and
realized in color. Solutions are provided so that you can check your work.

Play with the illustrations online. They come to life with interactive animations that show the
symmetries that generate them.

This book can be used as a playful educational tool to serve as an additional resource in the
classroom or home. For educators, the challenges within the pages of the book can be used as
"problem sets".

This book can be used as a relaxing coloring book.

This book can be used to entertain your mathematical intuition or interests.
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FOREWORD
By Alex Bellos

In 1919, the British logician Bertrand Russell wrote the following lines on mathematical
beauty:

Mathematics, rightly viewed, possesses not only truth, but
supreme beauty—a beauty cold and austere, like that of
sculpture, without appeal to any part of our weaker nature,
without the gorgeous trappings of painting or music, yet
sublimely pure, and capable of a stern perfection such as only
the greatest art can show. The true spirit of delight, the
exaltation, the sense of being more than Man, which is the
touchstone of the highest excellence, is to be found in
mathematics as surely as poetry.

A century later, these lines remain one of the most powerful statements of what is
unique and thrilling about mathematics.

Russell—the only mathematician to have won the Nobel Prize for
literature—was writing about the elegance of abstract thought. Yet mathematics also
embraces a more traditional understanding of beauty: the beauty of visual art. Many
images derived from mathematical ideas are extremely visually appealing. The
mandalas of Hinduism and the mosaics of Islamic geometric design, for example, are
works of art with a mathematical structure that for centuries have been used for both
decoration and contemplation. They are nice to look at as well as nice to think about.

In the overlap between what is mathematically interesting and what is
aesthetically attractive lies the concept of symmetry; that is, the property of certain
shapes such that when the shape is moved from its original position—via, say, rotation
around or reflection across an axis—there is a new position where the shape fits
perfectly onto itself. Psychologically, we are drawn to objects and images that contain
symmetries, such as the faces of other humans, which have left-right symmetry, or the
repeating patterns of fashion and interior design. Indeed, the universe is built on
symmetries at every level, from the molecular to the astronomical. Mathematics is the
best tool we have for the investigation of patterns, providing a language with which to
investigate the properties of symmetrical objects and shapes.



Alex Berke's idea to explore the math of symmetry through coloring is a brilliant
one. The meditative process of selecting colors, shading in sections, and slowly seeing
the picture take shape is matched by the intellectual buzz of discovering the abstract
structure that lies beneath. Coloring is a relaxing and satisfying activity, and in this book,
it becomes an enlightening one, too.

The book is beautifully presented, filled with attractive symmetrical shapes,
combinations of simple spirals, swirls, triangles and squares. The conceptual
progression is also clearly done, the clarity of design matched by the clarity of thought.

Many people find math difficult and inaccessible, but coloring is easy and for
everyone. This book provides a way to engage with important ideas just by thinking
about what color to use and where to put it. At the end of each exercise, you will be left
with a striking picture and—I hope—a better sense of Russell’s “true spirit of delight” in
abstract mathematics.
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INTRODUCTION

Symmetry presents itself in nature.

Landscape reflected in water

We can see symmetry in the repetitions, reflections, and turns in life around us, but these symmetries
often have imperfections.

b

Sunflower Starfish

Math creates a space where perfect symmetry can be explored.

In our real physical world, lines may not be perfectly straight, and squares may not be perfectly square,
but mathematics allows us to believe in straight lines and perfect squares.

OO

Throughout this book, we will pretend we are in that mathematical space. We will ignore the
imperfections in our drawings, and see shapes and patterns as if they are composed of perfect lines and
curves. We will play with our shapes and patterns, using color to manipulate their symmetries, and even
destroy them at times, all in order to better understand them.



SHAPES & SYMMETRIES: INTRODUCTION

Let's talk about symmetry. See, some shapes have more symmetry than others.

If while you blinked, a square was flipped,

flip
R —

Or turned a quarter of the way around,

1/4 turn
—_

You would then still see the same square and not know.

Yet this is not the case for a rectangle...

1/4 turn
e

Check in: Which of these shapes can be rotated by a % turn without changing in appearance?

$ & X $<f

The symmetries of our shapes are the transformations that leave our shapes unchanged. We can see
that a % turn is a symmetry of a square but not for a rectangle, and we can intuitively see that a square
is "more symmetric" than a rectangle because it can be flipped and turned in more ways.

[ ]

We will also see how this can change once color is added.

V]




SHAPES & SYMMETRIES: INTRODUCTION: COLORING & CHALLENGES




SHAPES & SYMMETRIES: INTRODUCTION: COLORING & CHALLENGES

Can you see which shapes have % turns and which do not?
Color the shapes with % turns with a different set of colors than the shapes that do not have % turns.

o0 () (o> () (.
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shapes with % turns and shapes with % turns



ROTATIONS

A regular triangle has equal side lengths and equal angles.

AN

What's more, it can rotate % of the way around a circle and appear unchanged. Had our eyes been
closed when it rotated, we would not have noticed a difference.

VANIRI/AN

1/3 turn

If the triangle instead rotates by an arbitrary amount, like % of the way around a circle, it will then appear
changed, since it is oriented differently.

SRV

1/4 turn 2/4 turn 3/4 turn

>

We can even find ways to color the triangle so that a ¥4 turn still does not change it.

A

1/3 turn

»>

While this will not work for other ways.

1/3 turn

LA

1/3 turn

B B

Check in: Which of the following colored triangles can be rotated by a % turn without changing in
appearance?

AAAA



SHAPES & SYMMETRIES: ROTATIONS 7

AN

Our triangle can also rotate by more than a s turn without changing. It can rotate by twice that much - %4
of the way around the circle - or by 3 times that much, which is all the way around the circle.

/
/ \
/ N
) AN

0 turn 1/3 turn 2/3 turn

We can keep rotating - by 4 times that much, 5 times that much, 6 times... and keep going. The triangle
seems to have an infinite number of rotations! But after 3 they become repetitive.

4 AY
4 AY
4 AY
4 AY
Y 3

0 turn 1/3turn  2/3turn

/
/ \

/ N

) AN

3/3 turn 4/3 turn 5/3 turn

Check in: How many ways can a square rotate without changing before the ways become repetitive?

[]

The triangle has only 3 unique rotations, so we'll talk about rotations that are less than a full turn. When
we say our triangle ‘has 3 rotations’ we mean it can be rotated by these 3 different turns and appear
unchanged.

/
/ \
/ N
) AN

0 turn 1/3 turn 2/3 turn

Other shapes have these same 3 rotations. For this reason, we can say they all share the same
symmetry group.

SP >
~. ‘.4

L2 | ))
0 turn 1/3turn  2/3 turn

However, their rotations can be removed by adding color.

o b o

0 turn 1/3turn  2/3 turn

Now when our shape is rotated, its color shows it.



SHAPES & SYMMETRIES: ROTATIONS

Now that we can count rotations, we can be more precise when we say a square has more symmetry
than a rectangle.

0 turn 1/2 turn

0 turn 1/4 turn 2/4 turn 3/4 turn

We can also see that a square has more rotational symmetry than a triangle, which in turn has more
than a rectangle: A rectangle has only 2 unique rotations, while our triangle has 3, and a square has 4.

i —
VANWANIAN

L OO

We don't need to stop at 4 rotations. We can find shapes with 5 rotations, 6 rotations, 7, 8, ... and keep
going towards infinity.

5 6 7 8
And these shapes don't even need to be so simple.

oAl
5 F




SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES

Can you find all of the shapes with 7 rotations?
Color the shapes so that they no longer have any rotations.
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shapes with 3, 4, 5, 6, 7 rotations



10 SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES

Color the shapes so that a ¥ turn continues to leave their appearance unchanged.

PANPINVANPANFINPIN

A
AR AN AR AR AN AR

£ £ £0 61 60 £

A A
AN AN

JAN

AA¢:¢VAAA AA#A AVAA AAVAA A‘{é“ AA#A AVAA AAVAA Ai:;AA AN\ A#A A%QA
ANNN N NN BNNN N NN, BNSNN N NN

A O A
AAvAA ANWA AAvAA ANWA .
AA AA
LNNNNNNNN LNNANNNANNAN LNNNNNNNN

shapes with % turns and sierpinski triangles



SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES




SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES
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SHAPES & SYMMETRIES: ROTATIONS 13

The rotations we have been finding for shapes are symmetries of these shapes - they are
transformations that leave the shapes unchanged. When shapes have the same symmetries, they share
a symmetry group.

Giving names to the groups that our shapes share will help us talk about and play with them later. We
can call the group with 2 rotations C2, and call the group with 3 rotations C3, call the group with 4
rotations C4, and so on...

!

Q
w

R

@)
a

BEE O
& B )

These groups are called the cyclic groups.

Check in: Which shapes illustrate C6?

BXRBE DO

Our shapes help us see our groups, but the members of the groups are the rotations, not the shapes.

(308 %

1
v

0turn 1/2 turn Oturn 1/2 turn
WANNANVAR T A S Y
= [
Oturn 1/3turn 2/3 turn Oturn 1/3 turn 2/3 turn

The rotations within each group are related to each other...



14 SHAPES & SYMMETRIES: ROTATIONS

C4:{DDDD

Oturn 1/4 turn 2/4 turn 3/4 turn

Another way to think about rotating a C4 shape by a %, turn is to rotate it by a "4 turn and then rotate it
again by a % turn.

C4: 7 turn * 24 turn - 34 turn

1/4
—_—

0 turn

1/4 turn

2/4
—_—

3/4 turn

Notice that the order in which these rotations are combined does not matter. For this reason we say the
cyclic groups are commutative.

C4: ", turn * %, turn = 2, turn * 4 turn
1/4 2/4
—_— —_—
0 turn 1/4 turn 3/4 turn
2/4 1/4
—_— —_—
0 turn 2/4 turn 3/4 turn

Similarly, for our C3 group, a % turn is the same as combining a "4 turn with another "4 turn.

C3:

/\ 1/3
- —

0 turn

4

1/3 turn

15 turn * 4 turn = 25 turn

2/3 turn

Adding another 4 turn brings the shape back to its starting position - the 0 turn.

C3: s turn * 5 turn * 4 turn - 0 turn

/\ 1/3
- —

0 turn

4

1/3

—_—

1/3 turn

C\ 13
\
—_

2/3 turn

AN

0 turn



SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES
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SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES

Can you find all of the C5 and C6 shapes?
Color the C4 shapes with as many colors as possible while keeping them as C4 shapes.

& A @SR
<5 X (K21
Sar S
SRS
R

C3, C4, C5, C6, C7 shapes



SHAPES & SYMMETRIES: ROTATIONS 17

We saw that the 4 turn did something special for our C3 group. We were able to combine it with itself
again and again in order to generate all of the rotations of C3 - it is a generator for our C3 group.

2/3 turn

5 turn * 4 turn * 5 turn —

In the same way that a %4 turn is a generator for our C3 group, we can see that a 4 turn is a generator for
our C4 group.

C3: 'sturn- { /\ A L

Oturn  1/3turn 2/3 turn

C4: 1/4turn—»{ n ::l L] E

Oturn 1/4turn 2/4 turn  3/4 turn

We might even choose different generators to end up with the same result...



18 SHAPES & SYMMETRIES: ROTATIONS

25 turn —™

2/3 turn

25 turn * 25 turn —

4/3 =1/3 turn

25 turn * 24 turn * 24 turn —

6/3 =0 turn

See, we can use a % turn as a generator and still end up with our C3 group.

C3: 25turn- { A A ﬁ‘

Oturn 1/3turn 2/3 turn

But beware we must be careful: not all members of our groups are generators.

For example, a %, turn does not generate all of the rotations of our C4 group.

0/4 turn 2/4 turn

Instead a %, turn generates a smaller group - our C2 group.

2, turn — { L3 L] } = { <1 b

0/4 turn  2/4 turn 0/2 turn  1/2 turn

Another way to see this is with color...



SHAPES & SYMMETRIES: ROTATIONS 19

We can transform a C4 shape into a C2 shape by coloring it.

Ny T

[ [

I'r I'r
C4 Cc2

Now the only rotations that leave this colored shape unchanged are those of C2.

I
N,
‘\ / AN
K o) (.
N,
1 ) N
1,/

-

N,
’

0 turn 1/4 turn 2/4 turn 3/4 turn
A
@
AN
c2 { Vﬁ }
1 ,’
I'r
0 turn 2/4 =1/2 turn

Again we must be careful. Not all colorings of our C4 shapes will transform them into C2 shapes. Some
will remove their rotations altogether and leave them with just the 0 turn.

N e N ~ ~
TN TN TN AN
[ [ [ [
I'r I'r I'r I'r
C4 C1 C1 C1

Challenge: Find all the generators for C4 and C8.

Challenge: Which rotations of C8 generate our C4 group but not C8?

&% & B b S S B S
% b b <



20 SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES

Can you use color to transform the uncolored shapes into C2 shapes?

NSy

C4 and C8 shapes



SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES 21

The C9 shape below is made up of pieces that repeat around a circle. Go clockwise around the circle,
coloring every other repeated piece in the same way. That is, color a piece, skip a piece, color the next
piece the same way as the first, and keep going. Do you end up coloring every piece? Can you use this to
prove a 2/9 turn is or isn't a generator for C9?

C9 shape (circular tessellation)



SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES




SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES 23

For some cyclic groups, any of their transformations can be used as generators. Which groups are these?

shapes with 3, 4, 5, 6, 7, 8 rotations



24 SHAPES & SYMMETRIES: ROTATIONS

Color can reduce C4 shapes to C2 or C1 shapes because C2 and C1 are subgroups of C4. A subgroup is
a group contained within a group.

ce{ B &)

Oturn 1/4turn 2/4 turn 3/4 turn

c{ B < }

Oturn 2/4 turn

c1:{ <5 }

0 turn

Similarly, C1, C2, and C3 are all subgroups of C6.

Check in: Can you see how color can reduce the C4 and C6 shapes to C1 or C2 shapes?

LD®H

It is easy to see that a group has all of the rotations of its subgroups,

w{ B F K

0 turn 1/6 turn 2/6 turn 3/6 turn 4/6 turn 5/6 turn

{ R B )

0 turn 2/6 turn 4/6 turn

cz:{s,F *}

0 turn 3/6 turn

But we cannot simply pick out a few rotations from a group and call them a subgroup. See for yourself:
Try to color a C6 shape so that it has only the rotations of C4.

$ F K F

It can't be done - C4 is not a subgroup of C6. There is more to it than that...



SHAPES & SYMMETRIES: ROTATIONS 25

When we use color to reduce our shapes to represent smaller groups, we give them a new set of
rotations.

af{ % <k % $ )

Oturn 1/4turn 2/4 turn 3/4 turn
RN

C2:{ 13
Oturn 2/4 turn

Not all sets of rotations are groups, and therefore cannot be subgroups. Try to color a shape in a way so
that it has only a 0 turn, "4 turn, and a %, turn.

%

It's impossible without also giving the shape a %, turn. {0 turn, ' turn, %, turn } is not a group, but
{0 turn, "4 turn, %, turn, %, turn } is. Why? This brings us back to combining rotations.

In order for a set of rotations to be a group, any combination of rotations in the set must also be in the
set. This rule is called group closure, and we can see it by looking at our shapes. If transforming our
shape by either a ' turn or a %, turn leaves our shape unchanged, then transforming our shape by a '
turn and then a %, turn must also leave our shape unchanged.

] — ]
1 — [
1 — O —

But we already saw that this is the same as just transforming the shape by the combination of these
turns! Remember, the elements in our groups are the transformations that leave our shapes unchanged,
so this combination must also be in our group.

C4: "yturn * %, turn = 3, turn
1/4 2/4 1

1 o O 5 [

0 turn 1/4 turn 3/4 turn

For this same reason, once we have a generator in our group, we have all the other transformations that
it generates.

C4: 1/4turn—>{|.j ::l L] I::

Oturn  1/4turn 2/4 turn  3/4 turn



26 SHAPES & SYMMETRIES: ROTATIONS

So far we've only been talking about groups of rotations. These groups are cyclic. They can be created
by combining just one rotation - a generator - multiple times with itself.

C3: 'sturn- { /\ A L

Oturn  1/3turn 2/3 turn

Our next groups have even more generators and symmetries to play with, such as reflections.



SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES




SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES




SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES 29

Color the shapes to make them all C2 shapes while using as many colors as possible. How many rotations
did you remove with color? How many colors were you able to use?

C2, C4, C6, C8 shapes



30 SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES

These shapes illustrate groups that share a common subgroup. Can you color the shapes to remove
rotations so that they illustrate their common subgroup?

i %i
B H B,

shapes with 6 rotations and shapes with 9 rotations



SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES




32 SHAPES & SYMMETRIES: ROTATIONS: COLORING & CHALLENGES




REFLECTIONS

Even when two shapes have the same number of rotations, one can still have more symmetry than the
other.

s

Some shapes have mirrors - they can reflect across internal, invisible lines without changing in
appearance.

reflect
e

<
K <k

While others cannot.

reflect

7

These mirrors are symmetries of our shapes, and we'll see how they can be removed by adding color.

reflect
—_

<&
&

First, let's generate more mirrors.



34 SHAPES & SYMMETRIES: REFLECTIONS

We saw that a single generator, the "4 turn, could generate the entire group of rotations of a regular
triangle. This was our C3 group.

C3: 'sturn- { /\ A L

Oturn  1/3turn 2/3 turn

We can also reflect this triangle across a vertical mirror through its center.

N

By combining this mirror with a rotation, we can generate even more mirrors, for even larger groups.

This will be easier to see if we use color.

reflect

. —_—
1/3 turn

. —_

1/3 turn
. E—

The triangle has 3 unique mirrors in total.
I

With just a rotation and a mirror as generators, we generated a new, larger group of symmetries for a
regular triangle.

A A A
A A L

We can do the same with other shapes, to see even bigger groups.

reflect
—_—

1/3 turn reflect
—_ —_

B B B




SHAPES & SYMMETRIES: REFLECTIONS: COLORING & CHALLENGES 35

These shapes have mirrors, and so does the illustration as a whole. Can you add color to remove all of the
mirrors?

N
NZ

mirrors
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SHAPES & SYMMETRIES: REFLECTIONS 37

Our regular triangle has 3 unique rotations and 3 unique reflections, a square has 4, and we can find
shapes with 5, 6, 7, and keep going...

Shapes that are not regular polygons can have these same symmetries.

We already saw how shapes that share the same set of symmetries share a symmetry group, but then
we only considered rotations. Symmetry groups can have both rotations and reflections.

3 4

We'll call the symmetry group that contains the 3 rotations and 3 reflections of a regular triangle D3. And
we'll call the symmetry group with the 4 rotations and 4 reflections of a square D4, while we call the
symmetry group with 5 rotations and 5 reflections D5, and so on...

D3: /AN

—

<
D4: €j ) Q

==

7N
D5:

A £
WX XK ©)
Ny Lo



38 SHAPES & SYMMETRIES: REFLECTIONS

This series of groups is called the dihedral groups. Again, these groups contain symmetries, not shapes -
the shapes just help us see them.

These shapes that share a symmetry group may look different, but when viewed through the lens of
group theory, they look the same. Only their symmetries - the rotations and reflections that leave them
unchanged - are seen.

Check in: Which of these shapes have 8 mirrors?

/\

LR >




SHAPES & SYMMETRIES: REFLECTIONS

39

We saw that the cyclic groups are commutative. The order in which we combined rotations did not
matter - the result was always the same. The dihedral groups are not commutative. We can see this in
our D4 shapes: rotating our D4 shapes by a % turn and then reflecting across a vertical mirror,

1/4 turn
—_—

reflect
—_—

Is not the same as reflecting across a vertical mirror and then rotating by a % turn.

reflect

1/4 turn

s

Challenge: Show that D3 is not commutative. Find 2 symmetries of our triangle where transforming the
triangle by one symmetry and then the next is not the same as applying the transformations in the

reversed order.
?
1
?
1

A
A

?
_—
?
e

A
A

Challenge: We showed how the ¥ turn and a vertical mirror could be used as generators for D3 and
generate all of the other mirrors of a regular triangle. Show how the % turn and a vertical mirror can be
used to generate all of the other mirrors of a square.

K DR DR DM

reflect
s

1/4 turn
—_

X

—_
1/4 turn reflect
% %
2 2 2
—_ —_— —_




Challenge: What is the result of combining two different mirrors?

z
e

Is the result a reflection or a rotation?

A — A

Is this always the case?

»
1

sa0an
%%%%
RPDHH

(go ahead and draw more shapes)

SHAPES & SYMMETRIES: REFLECTIONS



SHAPES & SYMMETRIES: REFLECTIONS 41

For our D4 group, we can see that the result of applying a vertical mirror and then a horizontal mirror is a
Y2 turn.

D4 * =% turn

K — K- K

Challenge: Can you find 2 mirrors where applying one and then the other results in a % turn in our D4
group?

g — —

Is it possible to use 2 mirrors to generate all of the symmetries of our D4 group? What about our other
dihedral groups?

Here are some shapes for you to puzzle over.

»
>
»

A A A
A A A
PR PR PR
PR PR PR

PPRHHEEE P
PPHPIPEERER K
PP HHEEE P
PP HEXP K
PP HEXP K
PRPPD HEEPK

B B H P
H B H B
B B B D
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How many unique rotations and reflections does each shape have? Color all of the D8 shapes so that they
are no longer D8 shapes but still have at least one mirror reflection.

A K K

¥ <t B =K
AN

&
@B
o 3K 2
HHe ke

D3, D4, D5, D6, D7, D8 shapes

X <> CHEB K 3
)-<f |26 H %
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The D8 shape below is made up of pieces that repeat around a circle. Show that a % turn and a vertical
mirror cannot be used as generators for our D8 group by coloring a piece, and then coloring other pieces if
and only if they can be reached by a % turn or mirror reflection from an already colored piece. What are the

symmetries of the colored shape you end up with?

7 [ NA
e

74 N

B

\\{ ,/4/
P QI/A

SR A

D8 shape (circular tessellation)
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By looking for rotations and reflections, we can see when shapes share a symmetry group,

D4 D4 D4

Or when they do not.

T X

And now that we have groups with more symmetries, there are more interesting subgroups to find.

We can again use color to reduce the amount of symmetry a shape has. For example, a D6 shape has 6
mirrors and 6 rotations, but with color we can remove 3 of these mirrors and 3 of these rotations to
reduce it to a D3 shape.

®-

Alternatively, we could have reduced the D6 shape to a D2 shape.

®-®

This is possible because D3 and D2 are subgroups of D6. Similarly, D4 is a subgroup of D8, and D2 is a
subgroup of both D4 and D8.

&%

Check in: What are the symmetry groups for these colored shapes?

L PEF
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What happens when color is added to remove only mirrors and not rotations?

- M

The dihedral groups have mirror reflections, while the cyclic groups do not. When these mirrors are
removed, we can see the cyclic groups are subgroups of the dihedral groups.

& — A

D3 c3
- %

D4 c4
-

D5 o

Color can also take away a shape's rotations to show us subgroups with only mirror reflections.

=
g 3
~
-

¥ ¥ K ¥
EER P
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Here is an example where a D4 shape is colored with 2 colors so that it has only 1 mirror and that mirror is

horizontal.

Challenge: Find other ways to color the D4 shape with 2 colors so that its only mirror is the horizontal
mirror.

After being colored in this way, the shape no longer has the symmetries of D4, instead it illustrates a
subgroup of D4.

Challenge: Can you find different ways to color the D4 shape with 2 colors so that it has only T mirror and
that mirror is diagonal?

PRI

Our D4 group has multiple subgroups that have just 2 symmetries. One of those subgroups is the group of
symmetries with just the horizontal mirror and the 0 turn (the 0 turn is also known as the identity).

Challenge: Can you find the other subgroups of our D4 group that have just 2 symmetries?

24

There are multiple ways to color our D4 shape to reduce it to a shape with only a 0 turn, a % turn, and 2
mirrors. This is just our D2 group! Here is an example where we keep the 2 diagonal mirrors.

P

Challenge: Color the D4 shape to remove the diagonal mirrors but keep the horizontal and vertical mirrors.
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Challenge: Is it possible to color a D4 shape to remove the horizontal mirror while keeping the vertical
mirror and % turn? (Hint: Think about group closure)

There is a relationship between the number of symmetries in our dihedral groups, the number of
symmetries in their subgroups, and the maximum number of colors we can use to reduce our dihedral
shapes to show those subgroups.

When we reduce our D4 shapes to D2 shapes, we reduce their number of symmetries from 8 (4 mirrors, 4
rotations) to 4 (2 mirrors, 2 rotations). This is also the case when we reduce our D4 shapes to C4 shapes:
Shapes go from having 4 mirrors and 4 rotations to having just 4 rotations.

D2 C4

Challenge: In any of the cases where we remove half the symmetries of these dihedral shapes, what is the
maximum number of colors we can use?

A &K B
F B K
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Can you find different ways to remove half of the symmetries of the D8 shapes? Color some of the shapes
to remove their mirrors while keeping their rotations. Color others to remove half of their mirrors and half
of their rotations.

R >
&-‘%'.’4

D8 shapes



educe the D4 and D8 shapes to D2 shapes.
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D4 and D8 shapes
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Can you add color to reduce the D6 shapes to D3 shapes? Then add more color to reduce them to
C3 shapes.

D6 shapes
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There is something about mirrors that you may have already noticed.

/X

Reflecting a shape across the same mirror twice in a row is the same as not reflecting it at all.

reflect ;! reflect

The second reflection reverses the work of the first reflection. The same can be said for all of the mirrors

we found.
reflect @ reflect g

>

9
|

|

l

reflect reflect

|
|

A
/.

P P
l

You may have also noticed that our rotations can be reversed as well. When our triangle is rotated by a

5 turn, rotating again by a % turn brings it back to the position it started in. The result is the same as a
0 turn.

5 turn * 25 turn = 0 turn

A 1/3 turn A 2/3 turn A
—_— —_—

0 turn 1/3 turn 0 turn

The same can be said the other way around.

%4 turn * "4 turn = 0 turn

A 2/3 turn & 1/3 turn A
e e

0 turn 2/3 turn 0 turn

Check in: Which rotation in C4 is the reverse of the % turn?
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When one transformation reverses the work of another transformation, it'’s called an inverse.

The Y turn is the inverse of the %4 turn in C3 and D3. Similarly, the % turn and % turn are inverses in C4

and D4.

4, turn * %, turn = 0 turn = 3, turn * "4 turn

1/4 turn
—_
0 turn
3/4 turn
—_—
0 turn

3/4 turn
—_
1/4 turn 0 turn
1/4 turn
—_—
3/4 turn 0 turn

Check in: What is the inverse of a horizontal reflection? What is the inverse of any reflection?

X v ¥ 3K 3

All of the symmetries in our cyclic and dihedral groups have inverses. Even when a shape undergoes a
combination of reflections and rotations,

1/4 turn
—_

0 turn

reflect
%

2/4 turn
—_

The transformations can be reversed and the shape can end back in the position it started.

2/4 turn
%

reflect
% %

3/4 turn
—_—

0 turn

4 turn * reflect x %, turn x %, turn * reflect * 3, turn = 0 turn

This is a rule in group theory: Any member of a group has an inverse that is also in the group. And
remember, the members of our groups are the symmetries of our shapes - they are the reflections and
rotations that leave our shapes unchanged.

53
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So far we have been focusing on only the symmetries of shapes, but there are even more types of
symmetry to see and even bigger groups to talk about - groups of infinite size. Next we'll see
transformations that take our illustrations beyond shapes and generate patterns that repeat forever...

Challenge: What would happen if you reflected a shape across a mirror that sat next to the shape rather
than through its center?

Challenge: Color the squares to show the result of reflecting across a vertical mirror and then rotating by a
% turn. Then find the combination of transformations that brings the square back to its starting position.

reflect 1/4 turn ? ?
—_ —_— —_— —_

0 turn 0 turn
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This entire illustration has mirrors and a % turn. Can you use color to remove the mirrors while maintaining
the % turn?

N A
N =
> N
VN
A

4
N =
> N
VTN

dihedral shapes
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Use color to reduce the symmetries of the shapes so that their only remaining symmetry is equivalent to
the O turn, or the transformation that does nothing. This do-nothing transformation is called the "identity”
and itis in every group.

Dg%gﬂgm\

@ <]<1>[> 080

D3, D4, D5, D6, D7, D8 shapes
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This illustration as a whole has 2 mirrors and a % turn. Can you see these symmetries? Color the
illustration with as many colors as possible while maintaining these 2 mirrors and % turn.

WK
i

.
=
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patterns of repeated shapes with mirror reflections and rotations
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INFINITELY REPEATING PATTERNS
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FRIEZE GROUPS

The frieze groups can be seen in patterns that repeat infinitely in opposite directions.

A page cannot do these patterns justice. It cuts them off when really they continue repeating forever...

AAAAAAAAAAANAAAAAAA]

Consider the smallest repeating piece of this pattern as a unit.

pd

We can see the entire pattern can shift over by this unit. Each piece shifts on to an identical piece and
there is always more behind to replace what was shifted,

So that the shift leaves the entire pattern unchanged. Such is the nature of infinite repetition...

This shift is a symmetry called translation.
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Translations are the only symmetries in our simplest group of frieze patterns, so this group can be
generated by translations alone.

We can see this by starting with a single piece

pd

That is copied and then translated

pdyd

Again and again...

An infinite number of times...

To result in a pattern with translation as a symmetry that leaves the entire pattern unchanged.

Check in: Can you see the translations in these patterns? Can you extend your imagination to see these as
infinitely repeating patterns that repeat beyond the page borders?

A d A
A/ araraa
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Like any of the symmetries we have seen, translations can be combined and the result of the
combination will still be a symmetry. We can see this by combining a translation with another
translation so that in the same way a pattern can shift over by 1 unit and remain unchanged, it can also
shift over by 2 units and remain unchanged.

1
e
ces < H

Or we can use color to take them away.

By coloring every other unit in this pattern, we can double the shortest possible distance of translation in
the pattern from 1 unit to 2.

A M 4

Now only shifting by an even number of units leaves the pattern unchanged in appearance. The pattern
still repeats infinitely, and there are still an infinite number of translations that will leave it unchanged. By
adding color, we took away ' of its translations, but % of infinity is still infinity.

Challenge: What is the inverse of a translation that shifts our pattern a unit to the right?




INFINITELY REPEATING PATTERNS: FRIEZE GROUPS: COLORING & CHALLENGES

Ay SyAy ) Ay s Ay Ay sy aysyal
7000000077707 7
PLPPLPPPPEPPLE LS
A7/ ar/aazaA
SO0/
4.l dVd
(AU AN 2
aasasssassssss
0000000000000 0

frieze patterns (coco)




INFINITELY REPEATING PATTERNS: FRIEZE GROUPS: COLORING & CHALLENGES

/ey
A e e e e e
e NS NN
A
/ey
e e e e e e
oy
e
/ey
A e e e e e



INFINITELY REPEATING PATTERNS: FRIEZE GROUPS

Our patterns can have more symmetries than just translations.

Reflecting a piece across a horizontal mirror before translating it,

AN
1
/N

Generates a new pattern, with more symmetry than the one before.

/N

pd
N

/N
/N
/N
/N

The pattern still has translations - it can still shift over without changing.

\
-

/N

AN AN
AN AN
AN AN

4
4
S

\
-

AN /N
AN

4
S

But it also has a horizontal mirror: The entire pattern can reflect across the same mirror that
transformed our first piece, and appear unchanged.

65
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Patterns can have vertical mirrors as well.

A
A
A AN AN

These mirrors shift over with each repeated translation, so once a pattern has one vertical mirror, it has
an infinite number of vertical mirrors.

A A Al

Twice that many, really.

A Al e

Even though we start with a vertical mirror on one side of each piece, as the pattern repeats, another
different vertical mirror shows itself.

Check in: Can you see the mirrors in the following patterns?

ANATNATNATNATNATNATNATRATN

/ / /
\ \ \

PrANN
PrANN
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All of the mirrors in our frieze patterns can be removed with color.

AN A
ANANENAENENAN

AN AN AN

With color, we can reduce the patterns so that translations are their only symmetries.

AN
AR A NN

A A A

Why can we do this? This brings us back to subgroups.

Our patterns with vertical mirror reflections belong to a symmetry group with translations and vertical
mirrors.

vertical mirror reflection & translation:

AN AN AN

Naturally, the group with only translations is a subgroup.
translation:

AN A A

The same goes for our patterns with horizontal mirrors. Color can remove their mirrors as well, and
reduce them to patterns with only translations.

—

A 0-> A
NN NN
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Frieze patterns can also have % turns as symmetries.

We can see how they are generated by looking at a single piece that rotates by a % turn around a point,

before translating.

pd
7
pd

NN

7

\,
N
\,
\,
\,
\,
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\
PR R—
\,
\

And just as we saw for vertical mirrors, once there is one point of rotation, there are infinitely many more,
on either side of each piece,

That the entire pattern can rotate around, yet remain unchanged.



INFINITELY REPEATING PATTERNS: FRIEZE GROUPS 69

There is another type of symmetry called glide reflection.

A A A
NN N

A glide reflection is a transformation that reflects across a mirror line at the same time as translating
along it.

Glide reflections show themselves in other patterns as well. The patterns we generated with horizontal
mirrors have glide reflections too,
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Can you see which patterns have horizontal mirrors and which have vertical mirrors? Use color to remove
all of the vertical mirrors.

< D )\ A
EWINEhy

A NATNATNATNATNA TN

frieze patterns with horizontal mirrors, and frieze patterns with vertical mirrors (o and oo co)
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Can you see all of the % turns in these frieze patterns? Use color to double the shortest possible distance
of translation for each pattern while maintaining some of the % turns. How does the number of % turns
change?

GV SV eV Vv eV eV
83 73 173 73 73 p3 77 gy
Coloeel ol el e
Uy ldyldyrlidyridyidyrlity
BT SV v/ eV av/ av/av,
AP AP
UV A A A

frieze patterns with % turns (22 )
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Can you see the glide reflections in these patterns? Use color to triple the shortest possible distance of
translation in the patterns, while making sure they still have glide reflections.

ﬁ%%\yﬁ%ﬁ\%&\%\%\y

frieze patterns with glide reflections (eox)
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Can you see which patterns have horizontal mirrors, and which patterns have glide reflections? Use color
to transform the patterns with horizontal mirrors into patterns with glide reflections only, so that all of the
patterns have glide reflections.

Z@%@%@%@%@%@%@%

frieze patterns with horizontal mirrors and frieze patterns with glide reflections (o and oox)
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We have now seen patterns with each of the frieze group symmetries.

translation:

AAAAAAAAAAAAAANAAA]

horizontal mirror reflection & translation:

vertical mirror reflection & translation:

NN DD D DI N N N
AN AN NSNS AN NN N

They all have translations, and all but the simplest have an additional generator of either a
horizontal mirror, vertical mirror, glide reflection, or % turn.

Let's clarify what we've been talking about and coloring...
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The frieze patterns illustrate the frieze groups. These groups contain symmetries, not patterns - the
patterns just help us see them.

For example, vertical mirror reflections and translations are symmetries in a group that can be seen
with the patterns:

AR AR A ER AR AR

And we can come up with infinitely more pattern designs to illustrate it.

This is the case for all of our pattern groups. As long as a pattern has units

pd

Where applying the same symmetries to any unit leaves the entire pattern unchanged,

Then the pattern illustrates the same group as any other patterns with the same symmetries.

% turn rotation & translation:
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Combining the frieze group symmetries yields even more groups of patterns. For example, we can make
patterns with glide reflection, vertical mirror reflection, % turn rotation, translation:

PN PN
N7 L~

And color can again reduce the symmetry in these patterns so that they share the same symmetry
groups as the simpler patterns we already colored.

¥ turn rotation & translation:

PN PN
NP NP

glide reflection & translation:

PN PN
N NN

vertical mirror reflection & translation:

Pl N PN
N7 L~
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Patterns illustrating the frieze group with all possible symmetries
(glide reflection, horizontal mirror reflection, vertical mirror reflection, % turn rotation, translation)

AN
N/
AN
N/
AN
N
/N
N/

Can be reduced to each of the pattern groups we have already seen.

¥ turn rotation & translation:

/A
V
AN
Vv
/A

horizontal mirror reflection & translation:

N2 %

Ah
\V/
AN
\V/
Ah

You can find the rest!

Check in: Can you see % turns in these patterns? What about vertical mirrors?

(EMEMEEMMEMMOMIMMIMIND
NYANVANAVAVAVAN AV AVAVAN AN AN
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There are 7 frieze groups, and we have now colored all of them. There are no other ways to combine our
symmetries to generate patterns that repeat forever in one direction. Surprised? Then try to generate
patterns with different groups of symmetries by again starting with a single piece

e

Or use color to reduce a pattern to one with a combination of symmetries that we did not yet see, like a
pattern with just horizontal mirror reflection, vertical mirror reflection, translation.

You will have to give up - it's not possible for a pattern to have just those symmetries because
combining a horizontal mirror with a vertical mirror brings about a % turn rotation. This is just one
example of how combining symmetries results in other symmetries, and brings us back to pattern
groups we already saw.

Yet we can still find more repeating patterns. Frieze patterns are limited to repetition along one
dimension, but wallpaper patterns do not have that limit.

AN (W, (. (., {. {4
J W wwwWww W

When that limit is removed for the wallpaper patterns, the number of possible patterns and amount of
symmetry within them grows beyond what we have colored.

AN . (. (. (N N, I,
f W W W W W A A
AN WA, (. (. . (. W,

;i
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Challenge: What happens when you start with a single piece and then transform it with both rotation and
glide reflection? What other symmetries emerge?

pd

Aside from our simplest frieze pattern group that has just translation, we can see how different types of
symmetries can be used to generate the same pattern.

See, we can reflect across one mirror,

| InN

And then across another different mirror,

AN A

And keep reflecting across these alternating mirrors,

| N | SN | N

To generate a pattern that can also be generated by just one mirror and a translation.

A - A A

This is an example of how various sets of generators - two different mirrors versus one mirror and a
translation - can be used to generate the same pattern group.

AN AN AN AN AN

Challenge: For each of the frieze pattern groups, what are the various sets of symmetries that can be used
to generate the entire pattern group?
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translation:

AAAAAAAAAAAAAANAAA]

horizontal mirror reflection & translation:

vertical mirror reflection & translation:

I I DN DN IS TSN TN TN
AN AN AN AN AN AN AN N

% turn rotation & translation:

vertical mirror reflection, glide reflection, %2 turn rotation & translation:

horizontal and vertical mirror reflection, % turn rotation & translation:
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patterns from each of the 7 frieze groups

(OOOO, 00 #, #0009, 2200, X, 2*00, *2200)
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Can you identify the symmetries in each of the patterns?

Color each pattern to triple its shortest possible translation distance, while making sure it continues to
represent the same symmetry group.

UHHHHHHH A

AAA A A A A
ANy ZANN 24 NNy Z4NNNpg

patterns from each of the 7 frieze groups

(OOOO, 00 #, #0009, 2200, X, 2*00, *2200)
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Use color to reduce the amount of symmetry in the patterns so that they only have vertical mirrors and
translations, and do not have % turns.

YANNyZ4ANNyZ4NSyZ4NNNpg
IS N N N
NGNS AN
P NN SN
AN AN AN AN Ty
2 V2 V2 /AN,
ANNZANNVZANZANA
AN NN

frieze patterns with glide reflections, vertical mirrors, % turns, and translations (2 )
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WALLPAPER GROUPS

Wallpaper Patterns repeat infinitely along 2 dimensions, and with more dimensions come more
symmetries.

The frieze patterns showed us how translations, rotations, and mirrors and glide reflections can be
symmetries of infinitely repeating patterns. The wallpaper patterns can translate, rotate, reflect and glide
in even more directions...

And since the repetitions in these patterns are no longer limited to a line, they can have more rotations
than just % turns.

We'll color through patterns with all of these symmetries, as well as all of the ways in which they can be
combined. We will mutate these symmetries, and transform the patterns with color. But first, let's make
sure we can see their infinite repetitions.

Check in: Can you extend your imagination to see wallpaper patterns repeat infinitely beyond a page's
borders?
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Like the frieze patterns, we can see the infinite translations within wallpaper patterns by focusing on a
single piece that shifts over,

pd

This time in multiple directions.

And again we can see how the entire pattern can shift with these translations. Because each shifting
piece is followed by infinitely more pieces, the entire pattern is left unchanged.

These translations in different directions are symmetries of the wallpaper patterns that we can combine
to see such translations in even more directions.

— ¥ | =\

AN A A 7.
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Any 2 different directions of translation can be combined with each other, or with themselves, in any
number of ways, again and again, to produce more,

Showing us how these 2 translations can be the generators for a group of translations that span across
all directions of the wallpaper patterns.

And once again we can use color to alter our patterns, such as taking away some of these translations,

AAAAAAS
AAAAAAS
AAAAAAS
AAAAAAS
AAAAAAS

And doubling the shortest distance a pattern can translate vertically,

Addddddd
AAAAA A

Addddddd
AAAAA A

Or the many other ways that you will puzzle over.
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The simplest wallpaper patterns have translations as their only symmetries.

They get more interesting when we consider groups with more complex symmetries...

Challenge: Can you color the pattern so that the shortest possible translation is in a diagonal direction?
Then add more color so that the shortest possible distance of translation is tripled.
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We already saw how infinitely repeating patterns can have rotations.

As we might expect, wallpaper patterns can have % turns, which we can see a single piece rotate
around,

Or an entire pattern rotate around.

iy

/”’1
4 1
”’ ‘
L

A A 7
L7 7

Since the pieces of our patterns repeat along translations, their rotation points must repeat along these
same translations as well.

A
gl
e 1
" 1
- L 4
1 s
i -
s
v’




96 INFINITELY REPEATING PATTERNS: WALLPAPER GROUPS

Wallpaper patterns can also have % turns,

As well as ¥ turns,

And % turns.
AR AR ZRDA AR TR AR AR CXTE

SRR

L 7NV PZINNVZAN L 7N1" | 7
AR A KA RS K
A R R

But there are no other types of rotations for the wallpaper patterns, and we can see why.
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As each of our pieces rotates around a point, we can imagine it drawing a shape around itself as a
boundary.

hY N
AN -4
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This bounding shape has the same rotations as the point it was drawn around, and it is centered on that

NG

NZg
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NZRZEAVZON
AN AN AN o

When our starting piece shifts over in a translation, or is transformed by any other symmetry, all of the
other pieces that share its rotation point must go with it,
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And so its rotation point and bounding shape follow as well.



98 INFINITELY REPEATING PATTERNS: WALLPAPER GROUPS

This collection of pieces, with their rotation point and bounding shape, keep moving with the infinite
translations and symmetries of a wallpaper pattern,

NN
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So that we can see that bounding shape as part of an infinite grid of identical bounding shapes,
providing structure for a pattern.

See, a square can make a grid for a pattern that has % turns, with 4 other squares meeting perfectly at
each of its sides. Each time it rotates by a % turn, the surrounding squares rotate around it, each landing
on an identical square, so that a pattern structured within this grid can be left unchanged.

Making perfect grids is possible with shapes that have the right number of rotations,
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2 4 3 6

Such as the shapes with 2, 4, 3 and 6 rotations that can be drawn around our pieces as they make
¥ turns, % turns, ¥4 turns and % turns.
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But making these grids will not work with shapes that have any other number of rotations.

0000

Their angles cannot add up in a way to perfectly equal a full turn, so these other shapes cannot perfectly
fit together in a grid.
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For example, we can draw a shape with 5 rotations around a piece as its makes ¥ turns,

O

But we cannot make a perfect grid by surrounding that shape with 5 copies of itself at each of its sides.
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So we cannot have an infinitely repeating wallpaper pattern with % turns.

Challenge: Can you see the rotations in the following patterns? Can you imagine an underlying grid?

Challenge: Use color to remove the rotations in the patterns while maintaining their translations.
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Now that we have seen all the possible symmetries of the wallpaper patterns
(translations, mirrors, glide reflections, % turns, % turns, % turns, and % turns), we can color through
patterns with all of their possible combinations,

~ 1/
<—A—>
Sl N

In their many directions.

We'll play with these symmetries, destroy some, and puzzle over how to transform patterns to illustrate
different symmetry groups.

Each possible combination of symmetries defines a wallpaper group, and these groups have names. The
names (like xx or «632) may look cryptic, but they can be decoded to describe the symmetries within their
patterns. If you want to decode them, the notation section at the end tells how.
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%k %

This symmetry group is simple to see, since it has only mirror reflections.
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We can see a single piece of the pattern reflect across any one of its mirrors
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Challenge: Can you see the pattern’s different parallel vertical mirrors?

Challenge: Color the pattern to remove half of its mirrors.
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This pattern group has glide reflections

These axes shift over with its translations. This is due to group closure: the combination of any of the
glide reflection or translation symmetries in the group must also be in the group.

Challenge: Can you see the different parallel axes of the glide reflections?

Challenge: Can you color the pattern to remove half of the glide reflections axes? Use only 2 colors.
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This pattern has parallel axes of both glide and mirror reflections,
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and we can again use color to reduce it to simpler pattern groups we already saw

NS
.

such as by coloring away its glide reflections while keeping its mirror reflections.

Challenge: Can you see the different parallel axes of glide reflection?

Challenge: Color the pattern to remove the mirror reflections while keeping glide reflections.
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2222

This pattern has % turn rotations. There are 4 different points that we can see a single piece make a %
turn around

 J  J

!

and that the entire pattern can turn around.

Challenge: Can you see the many rotation points in the pattern?

Challenge: Color the pattern to remove some rotations while keeping others.






112 INFINITELY REPEATING PATTERNS: WALLPAPER GROUPS

%2222

This pattern has perpendicular axes of mirror reflection
with % turn rotations where the axes intersect.
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This is about to get more complicated...

Challenge: Is it possible for patterns to have perpendicular axes of reflection without % turns? Hint: Is the
result of reflecting a shape across two perpendicular mirrors the same as rotating it?

Challenge: Color the pattern to remove its mirrors while maintaining its % turns.
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22X

This pattern group has glide reflections and % turn rotations, but no mirror reflections. The glide
reflections have perpendicular axes, and the rotation centers do not lie on their intersection.

We can shift these axes and yet have a pattern with the same symmetries, and so it's in the same
wallpaper group.
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Challenge: Can you see the many different axes of glide reflection?

Challenge: Color the pattern to remove the horizontal axes of glide reflection while maintaining the vertical
glide reflections. What happens to the % turns?
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This pattern group contains both mirror and glide reflections where the axes of the glide reflections are
perpendicular to those of the mirror reflections. It also has % turn rotations on the glide reflection axes,

halfway between the mirror reflections.

We can again shift the axes to see a pattern with the same symmetries.

o

Challenge: Can you see the glide reflections and the rotation points in the pattern?

Challenge: Color the pattern to remove the glide reflections while maintaining the mirror reflections. What
happens to the rotations?
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2%22

Like another pattern group we already colored, this one has perpendicular reflection axes with % turn
rotations at their intersections.

However it also has additional rotations that do not lie on the intersection of the reflections.

Challenge: Can you see the rotation points that lie on the mirror reflection axes as well as those that do
not?

Challenge: Use color to transform the pattern into one that has glide reflections but no mirror reflections.
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442

This pattern has % turn rotations

As well as % turns.

Challenge: Color the pattern to reduce the % turns to % turns.
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442

This pattern group has % turn and % turn rotations, as well as reflections with axes that intersect in ways
that are both perpendicular and diagonal.
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Each of its rotation centers lie on multiple reflection axes:
The centers of the % turns are at the intersection of 4 mirror reflection axes. The centers of the % turns
sit on the intersection of 2 mirror reflection axes and 2 glide reflection axes.

Challenge: Can you see the % turns as well as the % turns? Can you find the many different axes of
reflection?

Challenge: Color the pattern to remove its reflections so that rotations are its only symmetries.



(+442)




124 INFINITELY REPEATING PATTERNS: WALLPAPER GROUPS

4457

This pattern group again contains % turn and % turn rotations as well as both mirror and glide
reflections, but this time with more glide reflections - there are 4 directions of glide reflection.

Each % turn rotation sits on the intersection of 2 perpendicular mirror reflection axes and the % turn
rotations sit on glide reflection axes.

Challenge: Can you see the many different axes of glide reflection?

Challenge: Color the pattern to remove the % turns while keeping the % turns.
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This pattern group contains mirror reflections, glide reflections, and % turn rotations.
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Some of the centers of rotation lie on the reflection axes, and some do not.

Challenge: Can you see the rotation centers that are both on and off the reflection axes?

Challenge: Color the pattern to remove the mirror reflections while keeping the % turns.



L
(LI
LI
(e
QLI
Sl a @



130 INFINITELY REPEATING PATTERNS: WALLPAPER GROUPS

*333

This pattern group also has mirror reflections, glide reflections, and % turn rotations,
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And this time all of the centers of rotation lie on the reflection axes.

Challenge: Can you see the glide reflections?

Challenge: Color the pattern to again remove the reflections while keeping the % turns.
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Any group with both % turns and % turns must have all of their combinations, including % turns...
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This pattern group has % turn, ¥4 turn, and % turn rotations but no reflections.

Challenge: Can you see the % turns? Can you see the % turns?

Challenge: Color the pattern to remove the % turn and % turn rotations while maintaining the % turns.
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%0632

This pattern group has % turn, % turn, and % turn rotations, as well as mirror and glide reflections.

Challenge: How many axes of reflection intersect at the centers of the 6 turn rotations?

Challenge: Color the pattern to remove the % turns while keeping mirror reflections and % turns.
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We have now colored through patterns that illustrate each of the wallpaper groups. Yet each wallpaper
group has endlessly many more pattern designs that could represent it. As long as a pattern has the
same symmetries as another, then it illustrates the same group.

We can continue to find these patterns in nature and the physical world around us,
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Symmetries, and the relationships between them, have inspired the works of artists, architects, and
mathematicians, who have a history of building upon each other’s ideas and creations. For example, our
symmetries can be explored through the artworks of M.C. Escher, who studied the wallpaper patterns he
saw in Islamic architecture, particularly the Alhambra palace in Spain. Developing his artwork was aided
by the papers he read about symmetry groups by mathematicians, and these mathematicians believe
his art further contributed to their field.

Mathematics can help us understand the symmetries within art and the world around us, as well as their
abstractions. There are even symmetries that we cannot precisely draw on paper, or picture in our
physical world, but that we can explore in the other realms that math shows to us.
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NOTES ON NOTATION

Cyclic Groups

We name our cyclic groups with Cn notation, where n is a number that corresponds to the number of
rotations in a group. For example, we illustrate our C3 group with shapes that have 3 rotations.

tTEE

Dihedral Groups

We use Dn notation to name our dihedral groups, where by Dn we mean the group with n rotations and n
mirrors. For example, we illustrate the D3 group with shapes that have 3 rotations and 3 mirror
reflections as symmetries.

¥TEE

Note that while many books use this same Dn notation, others use the D2n notation, where they would
call our D3 group Dé. Neither notation is better, they simply differ by academic field or the backgrounds
of the writers - so watch out if you read a book about abstract algebra! This book uses the Dn notation
rather than the D2n notation for ease and clarity, and because this is the notation more commonly used
by those who stare at shapes (geometers).

Pattern Groups

In this coloring book, we use orbifold notation to name each of the frieze and wallpaper groups with
symbols, such as ¥2222. In this section, we describe what this notation means, and how to decode it.
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NOTES ON NOTATION

There are a number of ways that mathematicians use notation to classify the frieze and wallpaper
pattern groups. For example, we could have used the IUC notation to call that same ¥2222 pattern pmm.
The IUC notation names a group by its generators. This can be confusing because of the ambiguity it
presents: As we saw, many groups have multiple choices for generators.

The orbifold notation names symmetry groups by their symmetries. The orbifold names can be read as
descriptions of the symmetries we can find in the patterns they name.

Before we talk about how to read the symbols in the orbifold notation, let’s talk about what an orbifold is.

(+2222)

We can think of an orbifold as a quotient of a surface divided by a symmetry group.

Imagine taking a pattern and folding it up along its symmetries until we come to the smallest piece that
can no longer be folded.

(orbifold for «2222)

This piece is the orbifold. The symmetries of the original pattern are features of this piece, and they can
be interpreted as instructions for how to unfold it to get our pattern again.

The original pattern («2222) has mirrors and four different % turn rotation points where the mirrors
intersect. These mirrors are the bounding sides of the orbifold, and the % turn rotation points are its
corners.



NOTES ON NOTATION

Reading The Orbifold Symbols

Groups are named in the orbifold notation by a string of the following symbols.

Positive integers and the infinity symbol 1, 2, 3, 4, 5, 6, 7, ... » indicate a rotation point with that many
rotations.

+ is used whenever there are mirror reflections.
x indicates glide reflection that is not the result of other symmetries in the pattern group.

o indicates translations that are not generated by other symmetries in the group.

Whenever a pattern has mirror axes that intersect, there is a rotation point at their intersection. The
number of rotations around that point is the same as the number of intersecting mirrors.

Patterns can also have rotations points that do not sit on mirrors.

Any number in a pattern name that comes before a «+ symbol describes a rotation point that does not sit
on a mirror, while any number that comes after a + symbol describes a rotation point that does sit on
mirrors.

For example, 442 names a pattern group that has two different % turn rotation points, and a % turn
rotation point, and no mirrors.
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NOTES ON NOTATION

+442 names a pattern that also has two different % turn rotation points and a % turn rotation point, but
this time all of those rotation points sit on the intersections of mirrors. The % turns are where 4 mirrors
intersect, and the % turns are where 2 mirrors intersect.
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42 then names a pattern with a % turn rotation point that does not sit on any mirrors, and a % turn
rotation point that sits at the intersection of 2 mirrors.
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(452)

The names of the wallpaper groups use only the numbers 2, 3, 4, 6 because these are the only rotations
possible for patterns drawn on an endless piece of flat paper, or the euclidean plane. However, more
rotations are possible on other surfaces, such as spheres and hyperbolic planes.



NOTES ON NOTATION

What about the frieze groups?

Orbifold notation describes frieze patterns as if they were wrapped around an infinitely large sphere
rather than following an infinitely long line. For this reason, instead of using the o symbol to indicate
translation, they use the © symbol to indicate infinite rotations. These points of infinite rotation are at the
poles of the sphere, while the frieze pattern wraps around the sphere like an equator.

o e
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(1)

However, if the frieze pattern has a horizontal mirror or a % turn or a glide reflection, then the poles are
identical. We can fold the pattern along these symmetries so that the poles meet, and the orbifold has
just one point of rotation, so only one e symbol is used.
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For more about orbifolds and orbifold notation, read “The Orbifold Notation for Two-Dimensional Groups” by John H. Conway
and Daniel H. Huson.
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Group theory helps define abstract structures. The groups in this coloring book are only a window into
the groups explored in the many realms of mathematics. This book is about "symmetry groups', and we
use shapes and patterns to illustrate them.

Remember: the groups contain symmetries, not the shapes or patterns.

The groups we talk about are the groups of symmetries in our illustrations. We can say a shape or
pattern is more "symmetrical” than another if it has a larger group of symmetries.

There are some rules and definitions that pertain to all groups, not just ours.

Group

A group G is a set coupled with a binary operator * that satisfies 4 requirements:
See the details of each rule for examples.

Closure: G is closed under %; i.e., if a and b are in G, then axb is in G.

Identity element: There exists an identity element e in G; i.e., for all a in G we have
axe=exa=a.

Inverse element: Every element in G has an inverse in G; i.e., for all a in G, there exists an
element -a in G such that ax(-a) = (-a)*a = e.

Associativity: The operator * acts associatively; i.e., for all a,b,cin G, a * (b % ¢c) = (a * b) * c.

Associative Property

When an operator * for a group G is associative, the way elements in G are grouped when the operator is
applied does not matter. l.e, forallab,cinG,a* (b*c)=(a*b) *xc.

One example of this is adding numbers: 1+ (2+3) = (1 +2) + 3.
Notice that subtraction of numbers is not associative: 1 - (2 - 3) does not equal (1 - 2) - 3.

Our groups of rotations have an associative operator: Our operator here is combining rotations.

For C3, ("4 turn * "4 turn) * %; turn = "4 turn * ("4 turn * % turn). That is, rotating twice by a 4 turn and
then rotating the result by a % turn is the same as combining a "4 turn with the result of rotating by a 4
turn and then by a % turn.
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Binary Operator
A binary operator x combines 2 elements, a and b, from a set S to give a third element: a * b.

An example is addition over the set of counting numbers: + is a binary operator that combines 2
numbers to create their sum: 1+2 = 3.

Our binary operator combines the transformations that act on our symmetry groups. For symmetry
elements a and b, a * b says "do a, and then do b". For example, if transformation a is "rotate by a %4 turn"
and b is "reflect horizontally", then a * b is "rotate by a 4 turn and then reflect horizontally”.

Closure

A set Sis closed under an operator * if combining any 2 elements in S with * results in an element that
isalsoinS;i.e foranyaandbin S, axbisalsoin S.

For example, the set of all counting numbers 0,1,2,3,... is closed under the addition operator + because
adding any two counting numbers results in another counting number.

Coming back to our sets of rotations, the set { ' turn, %, turn } is not closed because combining the 4
turn with the %, turn results in the % turn which is not in this set.

Commutative Property

A binary operator * is commutative if the order in which it combines elements does not matter.
l.e., for any 2 elements a and b, axb = bxa.

For example, addition is commutative because 1+ 2 = 2 + 1, but subtraction is not commutative
because1-2+#2-1.

A group with a commutative binary operator * is called a commutative group. This means that the order
in which any 2 of the group’s elements are combined does not matter.

For example, our groups with only rotations are commutative groups because the order in which any 2
rotations are combined does not matter. e.g. "4 turn * %, turn = %, turn » '/ turn = %, turn.

However, our groups with both rotations and reflections are not commutative because the order in which
their symmetries are combined does matter.

Cyclic Group

A group G is called cyclic if it can be generated by a single generator.

Our groups of rotations are cyclic groups because they can be generated by combining just one rotation
with itself, again and again. For example, our C2 group, {0 turn, 4 turn}, is generated by the 4 turn.
There are many other cyclic groups out there. Another C2 group that may look different, is the group

{1, -1} where the members of the group are the numbers 1 and -1 and the way of combining these
members is with multiplication. It can be generated by -1.

The term cyclic may be misleading. Our cyclic groups had a finite number of elements, and combining
them again and again created cycles. However, there are cyclic groups with infinite elements, such as the
integers under addition.



THEORY REFERENCE

Generator
Generators of a group are a set of elements that when combined with themselves, or each other, can
produce all the other elements of the group.

For example, -2 and 2 are generators that when combined with addition, generate the entire group of
even integers.

Identity Element
An identity element is a neutral element and every group has one. Whenever the identity element is
combined with any other element of the group, the result is the same as that other element.

For our groups of rotations, the identity element is the O turn: rotating by the 0 turn is the same as doing
nothing at all.
For the group of integers under addition, the identity element is 0: 0 + 2 = 2.

Inverse Element
An inverse element is the reverse of another element.

More formally, for a set, S with a binary operator, ¥, and a and b in S: a is the inverse of b if
axb = bxa = e, where e is the identity element.

For our groups of rotations, each rotation’s inverse element is the rotation that undoes it. For example,
the inverse of the 4 turn is the %4 turn because 4 turn * %5 turn — full turn. The full turn is the same as
the 0 turn which is our identity element.

For addition on the integers, each integer’s inverse element is it's negative: -1 is the inverse of 1 because
-1+1=0.

Order

The order of a group G is the number of elements in G. The order of G is sometimes written as |Gl.

For example, the order of our C3 group of rotations is 3 because C3 has 3 elements:

0turn 1/3 turn 2/3 turn

Set
A set is a collection of distinct elements.
For example, the set {blue, red, blue} is the same set as the set {blue, red}.

For our sets of rotations, the set {0 turn, "4 turn, % turn} is the same as the set {0 turn, 4 turn} because a
14 turn means the same thing as a %4 turn - they are not distinct.
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Subgroup
Given a group G, a subgroup of G is a group with the same binary operator as G and whose members
are all also in G.

For example, the group of even integers under addition {... =2, 0, 2, 4,...}, + is a subgroup of the group of
all integers under addition {... -2,-1,0, 1, 2,...}, +.

However, the same cannot be said for odd integers. The set of odd integers under addition

{...-3,-1,1, 3,5,...}, +is not closed and therefore cannot be a group: Combining odd integers with
addition produces even integers (e.g. 1+ 3 = 4), which are clearly not in the set of odd integers.



CHALLENGE SOLUTIONS & MORE

Challenge solutions are at:
http://beautifulsymmetry.onl/solutions

There are more patterns to play with, print, and color.

You can generate more circular patterns to represent the cyclic and dihedral groups at:
http://beautifulsymmetry.onl/circular-pattern

Or the 7 frieze patterns:
http://beautifulsymmetry.onl/frieze

As well as the 17 wallpaper patterns:
http://beautifulsymmetry.onl/wallpaper




